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Abstract
We show that the Riccati form of the one-dimensional Schrödinger equation
can be reformulated in terms of two linear equations depending on an arbitrary
function G. When G and the potential (as for anharmonic oscillators) are
polynomials the solutions of these two equations are entire functions (L and K)
and the zeros of K are identical to those of the wavefunction. Requiring such
a zero at a large but finite value of the argument yields low energy eigenstates
with exponentially small errors. Approximate formulae for these errors are
provided. We explain how to choose G in order to dramatically improve the
numerical treatment. The method yields many significant digits with modest
computer means. We discuss the extension of this method in the case of several
variables.

PACS numbers: 03.65.Ge, 03.65.−w,02.30.Em, 02.30.Mv,10.10.St, 33.20.−t

1. Introduction

Quantum anharmonic oscillators appear in a wide variety of problems in molecular, nuclear
or condensed matter physics. Typically, anharmonic terms appear in expansions about a
minimum of a potential, when one tries to incorporate the nonlinear features of the forces
responsible for this equilibrium. The most celebrated example is the quartic anharmonic
oscillator [1] where a λx4 term is added to the usual harmonic Hamiltonian. Introducing
bilinear couplings among a set of such oscillators leads to a rich spectrum. For instance,
multiphonon bound states in one-dimensional lattice models [2]. More generally, one can
think about the λφ4 (or higher powers of φ) field theories in various dimensions as systems of
coupled anharmonic oscillators.

Anharmonic terms can be treated perturbatively and the perturbative series can be
represented by Feynman diagrams. Unfortunately, the coefficients of the series [1, 3] have a
factorial growth and the numerical values obtained from the truncated series have an accuracy
which is subject to limitations. At fixed coupling, there is an order at which an optimal accuracy
is reached. At fixed order, there is a value of the coupling beyond which the numerical values
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are meaningless even as an order of magnitude. In the case of the single-well quartic potential,
Padé approximants can be used for the series or its Borel transform. Rigorous proofs of
convergence can be established in particular cases [4]. Unfortunately, such a method does
not apply to the case of the double-well potential [5] where instanton effects [6, 7] need to be
taken into account. It should also be noted that even when Padé approximants converge, the
convergence rate may be slow. Strong coupling expansions [8] or variational interpolations
[9] sometimes provide more accurate results.

The above discussion shows that finding an expansion which can be used indiscriminately
for most quantum mechanical problems with polynomial potentials remains a challenging
problem. Alternatively, one can use numerical methods. Variational methods are often
used to obtain upper and lower bounds on energy levels [10, 11]. These methods are
based on rigorous inequalities and are considered superior to methods based on numerical
integration [11]. However, the difference between the bounds widens rapidly with the
anharmonic coupling and the energy level. Methods based on series expansions in the
position variable [12–15] appear to produce more significant digits more easily. However, our
understanding of the convergence and numerical stability of these methods seems to be limited
to empirical observations. The methods based on series expansions fall into two categories:
those based on the evaluations of determinants [12, 14] and those based on boundary conditions
at large but finite values of the position [13, 15]. The main goal of this paper is to provide
a systematic discussion of the errors associated with this second category of methods and to
show how to make these errors arbitrarily small in the most efficient way. With the exception
of section 9, we only consider one-dimensional problems. We discuss two types of errors.
First, the numerical errors made in calculating the energy which make the wavefunction vanish
at some large value of the position xmax. Secondly, the intrinsic error due to the finiteness
of xmax.

The basic elements of the numerical method used hereafter were sketched in [15] and
applied to the quartic anharmonic oscillator. We wrote the logarithmic derivative of the
wavefunction which appears in the Riccati equation as L/K and showed that these functions
were entire. The values of the first ten eigenvalues with 30 significant digits provided for a
particular coupling have been used to test new theoretical methods [16]. Two issues were left
open in this formulation: first, the basic equations had an interesting invariance which was not
understood but could be used to improve the numerical efficiency and secondly, the use of the
method for parity non-invariant potentials appeared to be unduly complicated [17].

In section 2, we present a new formulation where these two issues are settled. The basic
equations presented depend on an arbitrary function denoted by G(x). This freedom can be
interpreted as a local gauge invariance associated with the fact that only L/K is physical.
The wavefunction is invariant under these local transformations. In section 3, we show how
to construct power series for L and K. The complications in the case of parity non-invariant
potentials (such as asymmetric double-wells) are minimal. When the potential and the gauge
function are polynomials, these series define entire function. In other words, it is always
possible to construct arbitrarily accurate solutions of the Schrödinger equation for arbitrary E
within a given range of the position variable, by calculating enough terms in the expansions
of L and K. This allows us to reproduce the asymptotic behaviour of the wavefunction and
determine the energy eigenvalues. In section 4, we use the global properties of the flows of
the Riccati equation to recall some of the basic results related to the WKB approximation and
the Sturm–Liouville theorem. We explain how bifurcations in the asymptotic behaviour of the
functions K and L can be exploited to determine the eigenvalues.

It should be noted that the importance of reproducing the proper asymptotic behaviour
has been emphasized in variational approaches [18]. It should also be noted that Padé
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approximants have been used in conjunction with the Riccati equation in [14], where the
quantization condition used was that the approximants give one additional coefficient in the
Taylor expansion. This procedure depends only on the coefficients of the expansions used
and there is no reference to any particular value of x (as our xmax). Consequently, there is no
obvious connection between the two approaches.

In the next two sections, we show how to turn the gauge invariance to our advantage.
In section 5, the quantitative aspects of the bifurcation are discussed with an exponential
parametrization similar to that used to determine Lyapounov exponents in the study of chaotic
dynamical system. The exponents are G-dependent. We provide an approximate way of
determining the exponents and energy resolution. We explain how our freedom in choosing G
can be used to make the bifurcation more violent and improve energy resolution. However, the
choice of G also affects the convergence of L and K and consequently the numerical accuracy
of the solution of the Schrödinger equation. In section 6, we show in a particular example
that for an expansion of L and K at a given order, a judicious choice of gauge can improve
the numerical accuracy of an energy level tremendously. We discuss the two principles which
allow making optimal choices of G and provide practical methods to determine approximately
this optimal choice for the general case. We use these methods to explain some empirical
results found in [13].

In section 7, we discuss the error δE on the energy levels due to the finiteness of xmax.
We propose two approximate formulae valid, respectively, for intermediate and large values
of xmax and compatible in overlapping ranges. Note that one can reinterpret the condition
that the wavefunction vanishes at xmax as coming from a slightly different problem where the
potential becomes infinite at xmax. In the path-integral formulation (which can be extended
immediately to field theory problems), the fact that the potential becomes infinite at xmax

means that paths with values of x larger than xmax are not taken into account. It has been
argued [19, 20] that these configurations are responsible for the asymptotic behaviour of the
regular perturbative series. In [20], we showed that the perturbative series of several modified
problem were convergent. The error formula sets the accuracy limitations of this approach.
Some of the methods used in this section could be used for quantum field theory problems.

The anharmonic oscillator can be considered as a field theory with one time and zero
space dimensions. It can be used to test approximate methods such as perturbative expansions
or semi-classical procedures. An illustrative example is given in [23] where multi-instanton
effects were considered and where the splitting of the two lowest levels of a double-well
problem was estimated with more than hundred digits. In section 8, we show that our method
can be used to reproduce all these digits. Finally, we discuss the generalization of the method
to problems with several variables in section 9. For these problems, our ability to reduce the
degree of expansion by using optimal gauge functions may be crucial.

2. Basic equations and their gauge invariance

We consider a one-dimensional, time-independent Schrödinger equation H� = E� , for a
Hamiltonian

H = p2

2m
+

2l∑
l=1

Vjx
j . (1)

As is well known, one can re-express the wavefunction in terms of its logarithmic derivative

�(x) ∝ exp

(
−1

h̄

∫ x

x0

dyφ(y)

)
(2)
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and obtain the Riccati form of the equation:

h̄φ′ = φ2 + 2m(E − V ). (3)

It is assumed that m > 0 and that the leading power of V is even with a positive coefficient
(V2l > 0).

Writing φ = L/K , we obtain a solution of equation (3) provided that we solve the system
of equations:

h̄L′ + 2m(V − E)K +GL = 0 (4)

h̄K ′ + L +GK = 0 (5)

where G(x) is an unspecified function. This can be seen by multiplying (4) by K, (5) by L
and eliminating GKL by taking the difference. One then obtains the Riccati equation (3)
multiplied by K2. Near a zero of K, one can check that equations (4) and (5) remain valid,
namely they impose that φ has a simple pole with residue −h̄. This allows the wavefunction
to become zero and change sign as the contour goes around the pole on either side.

Equations (4) and (5) are invariant under the local transformation

L(x) → Q(x)L(x)

K(x) → Q(x)K(x)

G(x) → G(x)− h̄Q′(x)/Q(x)

(6)

where Q(x) is an arbitrary function. It is clear that this transformation leaves φ and the
wavefunction unchanged. If we choose G = 0 and eliminate L using equation (5), we
recover the Schrödinger equation for K. Starting from this gauge and making an arbitrary
transformation, we find that in general

K(x) ∝ �(x)exp

(
−1

h̄

∫ x

x0

dyG(y)

)
. (7)

This shows that when G is polynomial, K is simply � multiplied by an entire function with
no zeros [21]. This means that the zeros of K and� are identical. In other words, there are no
spurious zeros when G is polynomial.

By taking the derivative of equations (4) and (5) and choosingG(x) appropriately, one can
obtain the basic equations used in [15]. The explicit form of G(x) is reached by comparing
the two sets of equations and integrating one of the differences. The two possibilities are
compatible. The resulting integral expression can be worked out easily by the interested
reader. The only important point is that the G found that way is in general not polynomial,
justifying the spurious zeros found with the original formulation.

3. Solutions in terms of entire functions

The function G can be chosen at our convenience. For instance, we could impose the condition
K = 1 by takingG = −L and recover the Riccati equation for L. However, the main advantage
of equations (4) and (5) is that they are linear first-order differential equations with variables
coefficients. It is well known [22] that if we consider these equations for complex x, the
solutions inherit the domain of analyticity of the coefficients (provided that this domain is
simply connected). If the coefficients are entire functions, there exists a unique entire solution
corresponding to a particular set of initial values. In the following, we restrict ourselves to the
case where V and G are polynomials.
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One can construct the unique solution corresponding to a particular choice of initial values
L(0) and K(0) by series expansions. Using K(x) = ∑∞

n=0Knx
n and similar notation for the

other functions, one obtains the simple recursion

Ln+1 = −1

h̄(n + 1)


 ∑
l+p=n

(2mVlKp + LlGp)− 2mEKn




Kn+1 = −1

h̄(n + 1)


Ln +

∑
l+p=n

KlGp


.

(8)

GivenL0 andK0, these equations allow us to determine all the other coefficients. For potentials
which are parity invariant, and if G is an odd function, L and K can be assigned definite and
opposite parities. In this case, we can impose the initial conditions K0 = 1 and L0 = 0 for
even wavefunctions andK0 = 0 andL0 = 1 for odd wavefunctions. If the Hamiltonian has no
special symmetry, as for instance in the case of an asymmetric double-well, one could leave
L0 indeterminate and fix it at the same time as E using conditions on the wavefunction or its
derivative at two different points. These two conditions translate (in good approximation) into
two polynomial equations in L0 and E and can be solved by Newton’s method.

The fact that equations (8) determine entire functions provided that V and G are
polynomials can be inferred directly from the fact that the coefficients will decrease as (n!)−κ

for some positive power κ to be determined and in general depending on the choice of G. As
we will explain in more detail in section 4, if the leading term in V is V2lx

2l, one expects from
equation (3) that for x large enough

φ(x) � ±
√

2mV2lx
l (9)

and asymptotically

�(x) ∝ exp

(
− ±1

(l + 1)h̄

√
2mV2lx

l+1

)
. (10)

Looking at the general expression for K given in equation (7), one sees that K will have the
same asymptotic behaviour provided that the integral of G does not grow faster than xl+1. If
this is the case, then κ = 1/(l + 1). This behaviour is well observed in empirical series.

Note that if G grows faster than xl, the coefficients decay more slowly and the procedure
seems to be less efficient. In the following, we will mostly discuss the case l = 2. If we require
that G is an odd polynomial growing not faster than x2, this means that G is homogeneous of
degree 1.

4. Quantization from global flow properties

In this section, we use the global properties of the flows associated with the Riccati equation
to rephrase some implications of Sturm–Liouville theorem and to justify the asymptotic
behaviour given in equation (9). The main goal of this section is to provide a simple and
intuitive picture of the bifurcation which occurs when the value of E is varied by a small
amount above or below an energy eigenvalue. The main results of this section are summarized
in figures 1 and 2.

We consider the solutions of equation (3) obtained by varying E with fixed initial values.
It is convenient to introduce an additional parameter s and to rewrite the original equation as
a two-dimensional ODE with an s-independent rhs
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Figure 1. Bifurcations of φ(x) from the upper part of the WKB curve associated with the ground
state energy E0 for energies E0 ± 10−5, E0 ± 10−10, E0 ± 10−15, E0 ± 10−20 and E0 ± 10−25

(from left to right).
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x
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200
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H=x^2+p^2+0.1x^4

Figure 2. Bifurcations of K(x) from its trajectory for E = E0. The changes in E are ±10−30,

±2 × 10−30, . . . ,±10−29.

h̄φ̇ = φ2 + 2m(E − V (x)) (11)

ẋ = 1 (12)

where the dot denotes the derivative with respect to s.
The flows in the (x, φ) plane have some simple global properties that we now proceed to

describe. We consider a solution (phase curve) with initial condition x = x0 and φ = φ0 at
s = 0. We assume that for these values the rhs of equation (11) is > 0. It will become clear
later that if such a choice is impossible, a normalizable wavefunction cannot be constructed.
With this assumption, the phase curve starts moving up and right as s increases, possibly
going through simple poles with residues −h. This situation persists unless the rhs of (11)
becomes zero. We call the separating curves defined by a zero for the rhs of equation (11),
φ = ±√

2m(V (x)− E), ‘WKB curves’. After a phase curve crosses (horizontally) a WKB
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curve, it moves right and down. If it crosses the WKB curve again, we can repeat the discussion
as at the beginning.

At some point, we reach the ‘last’ WKB curve (i.e. the farthest right). For x large
enough, the potential is dominated by its largest power and the upper (lower) part of this last
WKB curve has a strictly positive (negative) slope. For such values of x, if a phase curve
crosses the WKB curve, it will do so horizontally and move inside the region where the rhs
of equation (11) is negative. As s further increases, φ decreases, but the phase curve cannot
cross the lower part of the WKB curve horizontally which has a strictly negative slope. In the
same region, if φ has a pole, the curve reappears below the lower part of the WKB curve and
will never take positive values again.

In summary, if in the region described above, a phase curve crosses the WKB curve or
develops a pole, then it cannot develop a pole again. The other logical possibility is that the
phase curve does none of the above. It is thus clear that for fixed E, we can always find an X
such that if x > X,φ(x) has no pole. Consequently the two terms involving φ in equation (3)
cannot grow faster than 2m(E − V ). Otherwise, 2m(E − V ) would become negligible and
a pole would be necessary. At least one of these two terms needs to match 2m(E − V ).
Inspection of the two possibilities leads to equation (9). Only the positive solution which
asymptotically follows the upper WKB curve leads to a normalizable wavefunction.

If we compare two phase curves with identical initial conditions but different E, the curve
with larger E initially lies above the other. If the curve with lower E has the first pole at
x1, then that with larger E has the first pole at some x < x1. Remembering that the poles
of φ produce zeros of � , this rephrases the main idea behind the Sturm–Liouville theorem.
An exact energy eigenstate En is obtained when the wavefunction has its last zero at infinity.
When E is fine-tuned to that value, φ follows the upper branch of the WKB curve closely.
This trajectory is unstable under small changes in E. If the energy is slightly increased with
respect to En, φ develops a pole and reappears on the lower part of the WKB curve. If the
energy is slightly decreased with respect to En, φ crosses the upper part of the WKB curve
and reaches the lower part of the WKB curve. This is illustrated in figure 1 in the case of the
ground state of the quartic single-well anharmonic oscillator with m = 1/2, h̄ = 1, V2 = 1
and V4 = 0.1. All the figures in this section and the next two sections have been done with
this particular example.

The sensitive dependence on E is also present in the asymptotic behaviour of K. If the
energy is slightly increased with respect to En,K reaches zero at a finite value of x. If the
energy is slightly decreased with respect to En,K increases rapidly. This is illustrated in
figure 2 for the same example as in figure 1.

We now discuss the initial value φ0. For parity-invariant potentials, one only needs to
consider the cases φ0 = 0 (even �) or φ0 = −∞ (odd �) at x0 = 0. For potentials with
no reflection symmetry, one needs to ensure that the appropriate behaviour is reached when
x → −∞. This can be implemented in good approximation by requiring that the wavefunction
has also a zero at some large negative value xmin. For potentials with a reflection symmetry
about another point x1 than the origin, one can impose that the wavefunction (K(x1) = 0) or
its derivative (L(x1) = 0) vanish at that point. In all cases, we have an independent condition
which allows us to determine φ0.

In summary, for xmax large enough, the condition

K(xmax) = 0 (13)

provides a sharp upper bound on the energy levels. The lower part of figure 2 makes it clear
that as xmax increases, sharper bounds are reached. For potentials that are not parity invariant,
an additional condition has to be imposed. In all cases, one obtains polynomial equations
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Figure 3. Natural logarithm of δK(x) forE−E0 = 10−30 (lower set of point) andE−E0 = 10−28

(upper set of point). Lines are linear fits.

which can be solved for the energy levels given the potential or vice versa using Newton’s
method. Note also that a sharp lower bound can be found by solving L(xmax) = 0. The fact,
that in figure 1 a zero of K at E0 + δ corresponds to a zero of L at E0 − δ, suggests that the
exact value should be very close to the average of the two bounds.

5. G-dependence of the bifurcation

The strength of the bifurcation in K illustrated in figure 2 can be approximately characterized
by local exponents. If we consider the departure δK(x) from K(x) calculated at some exact
energy level En, we expect the approximate behaviour

δK(x) � C(E − En) exB. (14)

In other words ln(|δK(x)|) is linear with a slope B independent of the choice of E and an
intercept that varies as ln(|E − En|). This situation is approximately realized in the example
considered before as shown in figure 3. We have checked in the same example that the sign of
the energy difference plays no role. In other words, the same values of C and B can be used
above and below En.

The exponent B is not uniform. It increases with x and is G-dependent as shown in
figure 4. The local values of B have been calculated by fits in regions of width 0.2 with the
central value displayed in the horizontal label of figure 4.

The change in B can be understood as follows. If E is changed from En to En + δE,
then at some point we have a sudden transition from the upper to the lower WKB curve and
asymptotically

δ�(x) ∝ δE exp

(
+

1

(l + 1)h̄

√
2mV2lx

l+1

)
. (15)

Using equation (7) and expanding about xmax, we obtain that, in good approximation

B � 1

h̄

(√
2mV2lx

l
max −G(xmax)

)
. (16)

As shown in figure 4, this simple expression provides reasonable estimates of B. The slight
underestimation comes partly from the fact that equation (16) does not take into account the
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Figure 4. Value of B for various x and for G = −3x (empty hexagons), G = −2x (filled
squares) G = −x (crosses) and G = 0 (triangles). The continuous lines have been drawn using
equation (16).

harmonic term in V . Equation (16) shows that we can increase the strength of the bifurcation
near xmax by increasing xmax or −G(xmax). This allows us to ‘resolve’ the energy more
accurately. However, at the same time our numerical resolution ofK(xmax) is affected and we
need to take this effect into account. This question is treated in the next section. In general,
if we can establish that K(xmax) at an energy E very close to En, can be calculated with some
numerical accuracy δKnum, we have the approximate numerical energy resolution

δEnum ∝ δKnum exp

(
+

1

h̄

( −1

l + 1

√
2mV2lx

l+1
max +

∫ xmax

0
dxG(x)

))
. (17)

6. An optimal choice of G

In this section, we show that from a numerical point of view, the choice of G is important. We
discuss the question of an optimal choice, first with an example and then in general. We start
with the calculation of the ground state in the case m = 1/2, h̄ = 1, V2 = 1 and V4 = 0.1.
We discuss the estimation of the ground state energy using the equation K(xmax) = 0 with
xmax = 6. The fact that we use this finite value for xmax creates an error in the 25th digit (see
section 7).

From the discussion in section 3, it is reasonable to limit it to a gauge function of the form

G(x) = −ax (18)

which, using equation (7), implies that

K(x) ∝ �(x) e
1

2h̄ ax
2
. (19)

With this restriction, the optimization problem is reduced to the determination of a. As a
increases through positive values, the features of � are exponentially amplified, making the
bifurcation displayed in figure 2 more violent. Ideally, we would like to take a as large as
possible. However, if a is too large, we may need too many coefficients Kn to get a good
approximation. If we consider the problem at a given order, the two requirements of sensitivity
and accuracy result in a compromise which determines the optimal value of a.
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Figure 5. ln (|Kn6n|) versus n, forG = 0 (triangles), G = −x (filled squares),G = −2x (crosses)
and G = −3x (empty squares).
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Figure 6. ln (|Kn|) versus a, for n = 60 (upper set), 70 (next set), 80 (next set) and 90 (lower set).

As explained in section 3, the choice of equation (18) guarantees a suppression of the
form (n!)

−1
3 for the coefficients of L and K. However, the choice of a still affects the behaviour

of these coefficients significantly as shown in figure 5.
The quantityKnxnmax is relevant to decide at which order we need to truncate the series in

order to get a good estimate of K(xmax). For instance, if we require knowing K(xmax) with
errors of order 1, we need about 100 coefficients for a = 2 but more than 150 for a = 0. The
corresponding values for a = 1 and 3 fall between these two values, indicating that a = 2
is close to optimal. This estimate is confirmed by an analysis of the dependence of Kn on a.
Sample values are shown in figure 6. We observe rapid oscillations (that we will not attempt
to explain) and slowly varying amplitudes which have a minimum slightly below 2. Note that
on the logarithmic scale of figure 6, the zeros of Kn give −∞; however, due to the discrete
sampling of a, it just generates isolated dots on the graphs. Note also that in figures 5 and 6,
the coefficients have been calculated for an accurate value of the ground state energy.
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Figure 7. Number of significant digits for E0 versus a using the condition K(6) = 0 with
expansions of order 50 (empty diamonds), 75 (filled squares), 100 (crosses), 125 (empty squares)
and 150 (stars).

The behaviour of Kn calculated at the value of E sufficiently close to an eigenvalue, can
be understood by using the asymptotic form

K(xmax) ∝ exp
1

h̄

(
− 1

l + 1

√
2mV2lx

l+1
max −

∫ xmax

0
dxG(x)

)
. (20)

We emphasize that the relative sign between the two terms in the exponential is the opposite
of that given in equation (17), because we are now on the upper WKB curve. For a = 0,
equation (20) provides a rough estimate of Knxnmax. Remembering the minus sign in the
parametrization of G (equation (18)), we see that if a is given a small positive value, the
argument of the exponential in equation (20) decreases and we can obtain comparable accuracy
with less terms in the expansion. Naively, our optimum choice is obtained when the two terms
in the exponential cancel. In the general case, this amounts to having

√
2mV2lx

l+1
max � −(l + 1)

∫ xmax

0
dxG(x). (21)

For the particular example considered here, this cancellation is obtained for a =
(2/3)

√
0.1xmax � 1.27. It is clear that when the two terms cancel, the subleading terms

neglected in equation (9) should be taken into account. However, in several examples, we
found that this simple procedure gives results close to what is found empirically.

We now address the more general question of determining the G-dependence of the
number of significant digits that can be obtained from the condition K(xmax) = 0 using an
expansion of K truncated at a given order. For the example considered before in this section,
we see from figure 7 that, for instance for a truncation at order 100, the most accurate answer
is obtained for a � 1.6. It is worth noting that for this value of a, one gains more than 15
significant digits compared to the G = 0 case! This figure also indicates, that as expected,
the best possible answer (in the present case, 25 significant digits) can always be achieved by
calculating enough coefficients.

Using equation (17) and figure (6), we were able to approximately reproduce the left part
of figure 7 (0 < a < 1). To give a specific example, at order 100, when one changes a from
0 to 1, δKnum becomes four orders of magnitude smaller and the factor e−( a2h̄ )x2

max improves
the resolution by almost eight orders of magnitude. This approximately accounts for the gain
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of 11 significant digits observed in figure 7. A detailed understanding of the figure in the
region 1 < a < 2 is beyond what can be accomplished using the asymptotic form of the
wavefunction. However, the naive estimate of equation (21) provides a reasonable estimate of
the location of the optimal a.

It should be noted that an ansatz of the form of equation (19) with a = 1 has been used
in [12] and that the fact that varying a could improve the numerical efficiency was found
empirically in [13]. Equation (21) can be used to understand these results. For instance, for
H = p2 + x2 + x8, we can obtain a very accurate result with xmax = 2.8 (see section 7).
According to equation (21) the optimal value of a in this case is a = (2/5)x3

max � 8.8 which
is slightly below the value (≈10) suggested in [13]. Note also that equivalently good results
can be obtained using G = −bx3.

7. Approximate error formulae

In this section, we discuss the intrinsic error δE = E(xmax)−E(∞)whereE(xmax) is defined
by ψ(xmax, E(xmax)) = 0, for a given energy level. We emphasize that δE is the error due
to the finiteness of xmax independently of practical considerations regarding the numerical
estimation of E(xmax) which is assumed to be known with an error much smaller than δE
in this section. We use the familiar parametrization of the quadratic term of the potential,
V2 = 1

2mω
2 and we restore the dependence on h̄ and m. The error for the ground state of the

harmonic oscillator has been estimated in equation (4) of [20]. Using the asymptotic form of
the integral in this equation, we obtain

δEharm
0 � 2

(
S0

πh̄

) 1
2

e−S0/h̄ (22)

with

S0 =
∫ +∞

−∞
dt

1

2
m((ẋc(t))

2 + ω2(xc(t))
2) = mωx2

max (23)

and xc(t) = xmax e−ω|t−t0|. This corresponds to the semi-classical approximation where
the contribution of the large field configurations are obtained by calculating the quadratic
fluctuations with respect to xc(t). The anharmonic corrections can be approximated to the
lowest order in the anharmonic couplings by adding a term Sanh to S0 in the exponent of
equation (22) with

Sanh =
∫ +∞

−∞
dtVanh(xc(t)) (24)

and Vanh is the anharmonic part of the potential. Our final perturbative estimate is thus

δE0 � δEharm
0 exp


−

l∑
j=2

(
1

jh̄

)
V2j x

2j
max


. (25)

This estimate is accurate if the V2j and xmax are small enough. We expect that for the excited
states, the approximate formulae of the form of equation (25) multiplied by a polynomial
should hold.

When λ or xmax become too large, equation (25) is not adequate. To obtain a better
approximation, we use

∂

∂xmax
ψ(xmax, E(xmax)) = 0 (26)
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Figure 8. ln (δE0) as a function of xmax for λ= 0.1 (black dots). The continuous lines are from top
to bottom on the left of the figure: the harmonic case (equation (22)), equation (25) with V4 = 0.1
(fits the dots well on the left of the figure), equation (28) (fits the dots well on the right of the
figure).

and the asymptotic behaviour of � . We estimate that ∂�/∂E is of the order of the non-
normalizable WKB solution and as a consequence, δE has the asymptotic form

δE � P(xmax)(ψ(xmax))
2 (27)

where P is a polynomial. This form is correct for the ground state of the harmonic oscillator. In
the case where the leading term of V is V2lx

2l , this implies the asymptotic order of magnitude
estimate

δE ≈ exp

(
− 2

(l + 1)h̄

√
2mV2lx

l+1
max

)
. (28)

We have tested the two approximate errors formulae given above (equations (25) and
(28)) for the ground state corresponding to Vanh = λx4. We used the numerical values
h̄ = m = ω = 1 and λ = 0.1. The results are shown in figure 8. We see that for small
values of xmax, the perturbative estimate of equation (25) properly corrects the harmonic
result. However when xmax increases, equation (28) gives better results. If the left part of
the graph is displayed with a log–log scale, it is approximately linear with a slope close to 3.
In figure (8), the proportionality constant not given by equation (28) has been determined by
fitting the last five data points on the right of the figure. We conclude that by combining the
two approximations it is possible to get a reasonable estimate of the errors on E over a wide
range of xmax.

We have tested equation (28) for other potentials. For instance, for H = p2 + x2 + x8, in
order to get 30 significant digits, we estimated that xmax � 2.8. We found that the difference
between the ground state energy found from the conditionsK = 0 (upper bound) and L = 0
(lower bound) differed in the 30th significant digits.

8. A challenging test

The only practical limitation of the method proposed here is that in some cases the relevant
details of the potential appear in widely separated regions, forcing us to calculate a large
number of coefficients with many significant digits. A simple example where such problem
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may occur is the symmetric double-well with a small quartic coupling where the separation
between the wells goes as the inverse square root of the quartic coupling.

In [23], the lowest even and odd energies were calculated for a potential with m = 1,
h̄ = 1, V2 = −1/4, V4 = 1/2000 with 180 significant digits. Remarkably, the authors
were able to reproduce the 110 significant digits of the splitting between these two states
by calculating instanton effects. We have reproduced the 180 digits of both states using an
expansion of order 1700 for K and a value of xmax = 46. The calculations were performed
with 700 digit arithmetic. The calculation of one level with such a procedure takes less
than 2 h with Mathematica on an inexpensive laptop using Pentium3. The computation time
increases with the accuracy required. In order to fix the ideas, it takes less than 2 min to
reproduce the first 120 digits in the above calculation.

9. The multivariable case

The basic equations presented in section 2 can be extended when the single variable x is
replaced by an N-dimensional vector �x. In equation (2), φ becomes a vector �φ and the integral
a line integral. In order to guarantee that the wavefunction is independent of the choice of the
line, we require that the curl of �φ vanishes. Equation (3) becomes

h̄ �∇ �φ = �φ · �φ + 2m(E − V ). (29)

Using �φ = �L/K , we write as previously

h̄ �∇ �L + 2m(V − E)K + �G · �L = 0 (30)

h̄ �∇K + �L + �GK = 0 (31)

with �G(�x) unspecified at this point. These equations imply the multivariable Riccati
equation (29) multiplied by K2. Near a zero of K, these equations imply the same singularity
as equation (29). After using equation (31), the condition that φ has no curl reads

∇iL(j) +G(i)L(j) = ∇jL(i) +G(j)L(i). (32)

The parentheses for the vector indices are used in order to distinguish these indices from the
order in a power series expansion used later.

The transformation equations (7) can be vectorized trivially with Q treated as a scalar. In
the expression of K given by equation (7), the integral becomes a line integral and we require
that �G(�x) has a vanishing curl. This condition is also necessary to establish that different
derivatives acting on K commute.

The choice of coordinates to be used depends on the choice of the boundary conditions
imposed. If we require� to vanish on a large hypersphere, hyperspherical harmonics should
be used. If we require � to vanish on hypercubes (as suggested for lattice problems in [20])
Cartesian coordinates should be used. To fix the ideas, let us consider the case of Cartesian
coordinates for two variables x1 and x2 with boundary conditions on a rectangle. We expand
K(x1, x2) = ∑

m,n�0Km,nx
m
1 x

n
2 and similar expansions for the two components of �L. The

coefficients can be constructed order by order, with the order of Km,n defined as m + n. The
terms with one derivative yield the higher order terms. For instance, for K, we obtain equations
providingKm+1,n and Km,n+1 in terms of coefficients of lower order just as in equation (8). A
detailed construction shows that if V (x1, x2) has no special symmetry, we can determine all the
coefficients up to a given order l provided that we supply the values of two coefficients at each
intermediate order (for instance �Lm,0 for m � l). These coefficients together with E are fixed
by the boundary conditionsK(x1min, x2) = K(x1max, x2) = K(x1, x2min) = K(x1, x2max) = 0.
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Taking derivatives with respect to the free variables x1 and x2, and setting these variables to 0,
we obtain an infinite set of conditions. The truncation of this set, together with the truncation
of the expansion in the other variable must be studied carefully. If we consider the special
case where the problem can be solved by separation of variables, we see that it is important to
maintain a uniform accuracy for all the conditions. If all the coefficients have been calculated
up to order l, this can achieved in the following way. We retain the order of l/2 derivatives of
the four conditions in such a way that we get exactly 2l + 3 conditions which can be expanded
up to an order close to l/2 in the remaining variable. A practical implementation of this
program is in progress.

10. Conclusions

In conclusion, we have shown that accurate estimates of the energy levels of arbitrary
polynomial potentials bounded from below can be obtained by solving polynomial equations.
The fact that the functions L and K are entire guarantees that if we calculate enough terms
we will gain proper control of the asymptotic behaviour of the wavefunction. Reaching this
goal is in general a difficult task which often requires guesswork and analytical continuations
(see e.g. [24]). Here, the convergence of the procedure is guaranteed and the order at which we
can terminate the expansion in order to reach a given accuracy can be estimated. In addition,
a systematic understanding and control of the errors due to the finite value of xmax have been
achieved.

The understanding of the gauge invariance of the basic equations proposed here completely
resolves the issues raised from our initial proposal [15]. By varying G, from 0 to −φ, we can
interpolate between a situation where K is the wavefunction to another situation whereK = 1
and L = φ. However, for every other choice of G, only the ratio L/K has a direct physical
meaning. By properly choosing G, we can at the same time improve the convergence of K and
amplify the bifurcation towards the the non-normalizable behaviour.

The extreme accuracy obtained for two widely separated wells indicates that for reasonably
complicated potential, the number of terms that needs to be calculated is not prohibitive.
We intend to use this method to test analytical results regarding the role of large configurations
in the path-integral and to test semi-classical treatment of potentials with asymmetric wells
[6, 7].

The method can be extended in the case of several variables. It remains to be determined
if the simultaneous solution of many polynomial equations can be accomplished with a
reasonable accuracy. For these problems, the fact that a judicious choice of the arbitrary
functions �G allows us to decrease the order of the expansions may be crucial.
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